STAR Collaboration Meeting, Nantes, July 2002

FTPC Simulations

Frank Simon

Max – Planck – Institute, Munich, Germany

The Munich FTPC Group:

Volker Eckardt, Peter Maierbeck, Maria Mora, Markus Oldenburg, Jörn Putschke, Janet Seyboth, Peter Seyboth, Frank Simon

Outline

- The FTPC
- The FTPC Slow Simulator
- Preliminary Results from Simulations
- Conclusion and Outlook

FTPC: The Detector

- $2.5 < |\eta| < 4.0$
- 10 rows, 960 pads each
 ⇒ 9600 channels / FTPC
- 256 time bins / pad
- each row subdivided into 6 sectors
- gas mixture Ar/CO₂ 50/50

In STAR: 2 FTPCs (East & West) cover forward and backward rapidity region

Important: Radial electron drift (perpendicular to magnetic field) to optimize the two-track resolution and the momentum determination

FTPC: Radial Drift

no B field

$$E \propto 1/r \Rightarrow v_D \neq const$$

 $(v_D \sim 0.3 \, cm/\mu s \dots 2.0 \, cm/\mu s)$

with B field

$$\vec{E} \perp \vec{B} \Rightarrow \vec{F} = q(\vec{E} + \vec{v_D} \times \vec{B})$$

\$\Rightarrow\$ deflection angle is a function of \$r\$

For accurate reconstruction and simulation:

- drift velocity v_D has to be know with an accuracy of \sim 0.1%
- Lorentz deflection has to be calculated with MAGBOLTZ
- precise knowledge of the gas composition, pressure and temperature necessary

FTPC Slow Simulator

- electron drift, diffusion and pad response simulated
- DAQ mapping used
- ASIC parameters implemented in the simulation:

- AssociationMaker used to evaluate simulated data
- used associator cuts:

hits: max distance in r: 1 mm, max distance in φ : 1°, tracks: number of common hits to associate a track: 5

Simulator: Hits

- using 100 central AuAu Hijing events for $\sqrt{S_{NN}} = 200~GeV$
- typical Hijing event creates ~ 18 000 FTPC hits
- \sim 67% of the number of FTPC GEANT hits found
- ho \sim 97% of found hits associated

Problems to be solved:

- distribution of hit residuals too narrow (of the order of 15 μm) \Rightarrow electronic noise should be included in the simulation
- pad and time distribution of simulated clusters too narrow compared to real data
 adjust diffusion parameters and pad response function

Results: Influence of dead pads

the plots show the average φ of the hits on each track that was reconstructed and associated

- pads flagged out in the reconstruction (noisy pads) included in simulation
 - ⇒ regions with significant reduction in tracking efficiency due to lost hits

Results: Efficiency

- efficiency = number of associated primary tracks number of good primary FTPC tracks
- good FTPC tracks: a track that leaves 5 to 10 GEANT hits in the FTPC important: GEANT hits are counted also in dead regions of the FTPC (sector boundaries)
 - ⇒ geometrical acceptance included in efficiency

Results: Efficiency II

- ullet efficiency as a function of $|\eta|$ and p_t
- result of 500 Hijing events

Results: Momentum Resolution

- ullet p_t resolution as a function of $|\eta|$ and p_t
- especially for higher p_t (> 1.2 GeV/c) very low statistics

Conclusion and Outlook

- revised FTPC SlowSimulator working
- good interplay with AssociationMaker
- resonable results from tests with 100 central Hijing events

What comes next?

- tuning of simulator parameters to reproduce observed cluster shapes
- detailed study of acceptance, efficiency and resolutions
- embedding

